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The #ow "eld induced by a circular cylinder orbiting in a large vessel "lled with #uid
is investigated numerically. A "nite-volume method is applied to the two-dimensional
incompressible Navier}Stokes equations to compute the unsteady laminar #ow "elds. Moving
reference systems are employed to allow an easy imposition of boundary conditions and to
avoid grid deformation. Aspects of numerical accuracy related to the number of grid points and
time steps employed are discussed. The #ow is governed by two dimensionless parameters:
a Reynolds number and a Keulegan}Carpenter number. These are varied systematically in
order to "nd their in#uence on the #ow pattern. In particular, the temporal development of the
vorticity "eld and the lift on the cylinder are examined.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

THE FLOW AROUND A CIRCULAR CYLINDER is one of the classical problems of #uid dynamics.
Cylinders in constant cross-#ow or moving at constant velocity in a #uid at rest have been
the main focus of numerous experimental, theoretical and computational studies [see, e.g.,
Zdravkovich (1997) and the references therein]. Also, a variety of results for cylinders in
periodic cross-#ow or translationally oscillating cylinders can be found in the literature
[e.g., DuK tsch et al. (1998), Tatsuno & Bearman (1990), Lin et al. (1996) and the references
therein]. Compared to this, relatively little attention has been paid so far to circular motions
of cylinders in #uids. Also, for such a #ow situation there are important practical applica-
tions as, for instance, stirrers used in the chemical industry for mixing or long #exible shafts
rotating in #uids. To the authors' knowledge the only work dealing with such a #ow
con"guration is that in Chaplin (1988), where a cylinder orbitally moving (without rotation)
in a planar oscillatory in"nite #uid is studied, and in Wu & Sheridan (1997), where
a cylinder orbiting in a con"ned #uid is investigated experimentally.

The #ow situation considered in the present paper is similar to that in Wu & Sheridan
(1997): a cylinder orbiting on a circular trajectory within a large vessel "lled with #uid. The
corresponding problem con"guration is indicated in Figure 1. During the orbital movement
the points on the cylinder keep their position relative to the orbit centre. As it is well known,
above some critical Reynolds number a cylinder moving in a #uid generates the classical
KaH rmaH n vortex street (see Figure 2). Moving on a circular trajectory the cylinder successive-
ly may run through its own wake, resulting in more and more complex #ow patterns. The
objective of the present study is the determination of the general #ow behaviour for this
kind of #ow situation and the examination of the in#uence of characteristic problem
889}9746/02/040435#17 $35.00/0 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Problem con"guration.

Figure 2. KaH rmaH n vortices.
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parameters, such as the angular velocity �, the cylinder radius r
���

and the orbit radius r
���

.
The problem is studied by numerical simulation. In order to obtain numerically reliable
results, the in#uence of numerical parameters, such as the number of grid points and the
time-step size on the quality of the predictions is investigated. A reference set of problem
parameters is "xed, serving as a basis for the adjustment of the numerical parameters. Some
simplifying assumptions are made in order to limit the complexity of the problem. The #ow
is regarded as two-dimensional and the #uid is assumed to be an incompressible Newtonian
one with constant #uid properties. Only laminar #ow regimes with a maximum Reynolds
number of about 100 are considered. The vessel radius is chosen to be fairly large compared
to the orbit radius, such that the vessel wall has no signi"cant in#uence on the #ow "eld in
the region of the orbiting cylinder.

2. GOVERNING EQUATIONS

With respect to a Cartesian coordinate system with origin at the centre of the orbit
(see Figure 1) the orbital movement of the cylinder can be described by the equation of
motion

x(t)"r cos(�t)e
�
#r sin(�t)e

�
. (1)

where e
�
and e

�
are the Cartesian unit basis vectors, x is the position vector, t is the

time, � is the angular velocity and r is the distance of a point on the cylinder from the origin
of the orbit. Note that for any point on the cylinder r is "xed during the motion and is
bounded by

max�0, r
���

!r
���

�4r4r
���

#r
���

. (2)



NUMERICAL SIMULATION OF FLOW INDUCED BY A CYLINDER ORBITING IN A LARGE VESSEL 437
The velocity of the points on the cylinder is given by

v(t)"
dx

dt
"!r� sin(�t)e

�
#r� cos(�t)e

�
. (3)

The velocity of the centre of the cylinder, i.e., equation (3) with r"r
���

, which will be used
for the de"nition of the Reynolds number, we denote by v

���
.

The considered #ow problem can be described by the balance equations for mass and
momentum for an incompressible Newtonian #uid with constant #uid properties. In
a stationary frame of reference these equations can be written as

� ' u"0, �
Du

Dt
!� 'T"0, (4), (5)

where � is the #uid density, u"u(x, t) is the velocity vector, D/Dt is the material derivative
and � is the gradient operator with respect to the spatial coordinates. The stress tensor T is
de"ned by

T"!pI#�(�u#�u� ), (6)

with the dynamic viscosity �, the pressure p"p(x, t) and the unity tensor I.
The use of the balance equations in the above form, i.e., in a stationary frame of reference,

would be disadvantageous for the numerical treatment of the considered problem con"g-
uration, since it would require the use of deforming numerical grids together with rather
complicated boundary conditions. A more convenient approach is to transform the equa-
tions into a suitable moving reference system, such that relative to this system the grid and
the boundary conditions can be handled in an easier way. In general, for a reference system
rotating with an angular velocity � and translating with a velocity c (velocity of the origin)
equations (4) and (5) transform into the equations [see, e.g., Spurk (1989)]:

� ' u� "0, (7)

�
Du�
Dt

!� 'T"!��
Dc

Dt
#2��u� #

D�
Dt

� x#� � (� � x)� ; (8)

uJ is the velocity relative to the moving system, which is related to u by

uJ "u!� � x!c. (9)

While the continuity equation (7) remains unchanged, due to volume forces resulting from
the acceleration and the rotation of the frame of reference, additional terms appear in the
momentum equations (8): the acceleration of the reference system Dc/Dt, the Coriolis
acceleration 2� � uJ , the angular acceleration (D�/Dt)� x and the centrifugal acceleration
� � (� � x).

For our problem con"guration one can think of special moving reference systems which
might be useful to handle the problem: the system which rotates around the centre of the
orbit (rotational system), with the orbiting cylinder located eccentrically but in the centre of
the grid. The system is illustrated in Figure 3. Three cylinder positions for di!erent times are
sketched, showing that the grid is tightly mounted to the cylinder and follows the orbiting
movement around the centre of the vessel. Since the origin of the rotating coordinate system
remains "xed in the centre of the vessel, we have no translational velocity (c"0). The
rotational velocity is �"�e

�
, such that the momentum equations (8) can be written:

�
DuJ
Dt

!� 'T"!�[2� � u� #� � (� � x)].



Figure 3. Rotational reference system.
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To avoid the movement of the grid, additionally, for the actual computations, we look at
the problem from a reverse point of view, i.e., the cylinder and the grid remain "xed at
a certain position and the outer vessel boundary moves instead with corresponding negative
velocity. In this case accurate boundary conditions can be applied easily (see Figure 4):
u�
��	

"!� � x
��	

at the vessel wall and u�
���

"0 at the cylinder surface. We emphasize that
imposing these conditions the considered problem con"guration is represented exactly. All
numerical results reported in the next section, are obtained on the basis of this problem
setting.



Figure 4. Boundary conditions in the rotational frame of reference.
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In order to identify the characteristic parameters of the #ow we introduce dimensionless
values for the coordinate x, the velocity u� , the pressure p and the time t in the following way:

xH"

x

r
���

, uH"

u�
�v

���
�
, pH"

p

�v�
���

, tH"

�v
���

�t
r
���

.

With this, after introducing the stress tensor (6) and some simple algebra, the momentum
equations (8) can be written in the following dimensionless form:

DuH

DtH
#�HpH!

�
��v

���
�r
���

�HuH"!2
� r

���
�v

���
�
[e

�
� uH]!�

�r
���

�v
���

��
�
[e

�
� (e

�
� xH )]. (10)

Introducing a Reynolds number de"ned by

Re"
2 r

���
�v

���
��

�
(11)

and a Keulegan}Carpenter number de"ned by

KC"

�v
���

�
� r

���

"

r
���

r
���

, (12)

equation (10) takes the form

Du*

Dt*
#�*p*!

2

Re
�*u*"!

2

KC
[e

�
� u*]!

1

KC�
[e

�
� (e

�
� x*)] . (13)

It can be seen that, if the in#uence of the far-"eld radius is neglected, the problem features
are fully described by the two dimensionless parameters Re and KC.
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For the monitoring of the temporal behaviour of the results in the next sections a further
dimensionless quantity is introduced: the lift coe$cient c

�
for the cylinder de"ned by

c
�
"

!1

��v
���

��r
���
�
�
��

	u



	n
n
�
#pn

��dS, (14)

with the cylinder surface S, the outwards normal vector n"n
�
e
�
#n

�
e
�
on S and the

tangential velocity u


. The lift coe$cient de"ned in this way is a measure of the radial force

a!ecting the cylinder. For the visualization of the #ow patterns the vorticity 
 de"ned by

� � u"
e
�
"�

	u
�

	x
�

!

	u
�

	x
�
�e� (15)

is considered, which easily allows to identify shedding and motion of vortices.

3. NUMERICAL METHOD AND NUMERICAL ACCURACY

Concerning the numerical solution procedure employed we only give a brief summary and
refer to Durst & SchaK fer (1996) for a detailed description. The equations are discretized
using a fully conservative "nite-volume method on block-structured boundary-"tted grids.
In total, the order of accuracy of the spatial discretization scheme is about 1)5 due to the
usage of a mixture of the second order central di!erencing approximation and the upwind
scheme of "rst order for #ux interpolations (#ux-blending technique with factor 0)5). The
applied temporal discretization scheme is the three-point-backward method, which is
second-order accurate. A global nonlinear multi-grid technique with a pressure correction
approach of SIMPLE-type acting as smoother and coarse grid solver is used for the
solution of the discretized coupled system of equations for each time step.

Before systematically studying the physical problem, some test computations were
carried out in order to "x the requirements of the numerical resolution. Here, the major
objective was to ensure that the grid size (number of cells n

����
) and the time-step size �t are

adjusted properly such that reliable results with reasonable computational e!ort can be
achieved.

For this, "rst a reference set of problem parameters (as given in Table 1) has been "xed,
for which this adjustment was carried out. For this set (highest considered Re-number and
the lowest considered KC-number) we expect the highest #ow pattern complexity and the
highest disturbance of the cylinders wake. It is therefore the most critical combination from
the numerical point of view. Results for the reference case were computed with successively
re"ned grids (by a factor of 4) and time-step sizes (by a factor of 2). As a measure of accuracy
the temporal variation of the lift coe$cient c

�
for the cylinder was taken. Figure 5 shows the

results for grids with cell numbers n
����

of 128�128, 256�256 and 512�512 with a "xed
time-step size of �t"0.01 s. After an unordered starting period the lift shows a regular
oscillating behaviour with declining amplitude and frequency on all grids. A higher spatial
resolution leads to higher amplitudes and frequencies. However, these quantities strongly
depend on the spatial discretization, however the mean level does not. Figure 6 shows the
results for di!erent time-step sizes of �t"0.01, 0.005 and 0.0025 s for a "xed spatial
discretization with n

����
"128�128. One can see that, compared to the results with

�t"0.005 s, there are considerable di!erences in the results with �t"0.01 s, while with
�t"0.0025 s the improvement in accuracy is not very signi"cant.

Taking into account the computing times necessary for the di!erent numerical resolu-
tions, which due to the multigrid technique employed increases closely linearly with
n
����

and the number of time steps (which means that the solution method can be viewed as



TABLE 1
Parameter set for reference case

Problem parameter Reference value

Angular velocity, � 4�/s
Orbit radius, r

���
0.1m

Cylinder radius, r
���

0.02m
Vessel radius, r

��	
2m

Fluid density, � 1 000 kg/m�
Fluid viscosity, � 0.44Ns/m�
Reynolds number Re 114
Keulegan}Carpenter number KC 5

Figure 5. Lift history for di!erent grid sizes: } } } , grid 6: 128�128 cv;** , grid 7: 256�256cv; ) ) ) ) ) ) ) , grid 8:
512�512 cv.
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rather e$cient), we have to "nd a reasonable compromise between accuracy and computa-
tional e!ort. In particular, the high amount of time steps (due to the requirement of a large
real time) leads to enormous computing times in the range of months for the grid with
n
����

"512�512 even on a parallel cluster system of Pentium III processors. As a compro-
mise, further calculations have been performed with n

����
"256�256 and �t"0.005 s,

always having in mind the limited spatial accuracy, which, however, is not that critical with
respect to our major purpose, i.e., to study the in#uence of the Re- and KC-numbers on the
#ow properties.

Another preliminary test computation was carried out to check the in#uence of the vessel
radius r

��	
on the #ow "eld, which we would like to be not very signi"cant in order to

concentrate on the e!ects induced by the orbiting cylinder without much disturbance from
other e!ects. Here, the case Re"57 and KC"10 was considered. The results of three



Figure 6. Lift history for di!erent time-step sizes: }} } , �t"2.5�10��;** , �t"5.0�10��; ) ) ) ) ) ) ) , �t"10��.
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di!erent radii ratios were compared:

R
�
"

r
��	

r
���

"[5; 10; 20].

Figure 7 shows the variation of the lift coe$cient for the three cases. While we "nd
signi"cant di!erences in comparison of the small- and middle-sized radius, only small
di!erences occur between the middle and large vessel radius with regard to amplitude and
frequency of the oscillation. The value R

�
"10 is assumed to be large enough for our

purpose. All computations reported in the next section are performed with this value.

4. NUMERICAL RESULTS

The major objective of this work is to investigate the nature of the #ow "eld related to the
considered problem con"guration and to study how the variation of the characteristic
problem parameters in#uence the results. The dimensionless form of the momentum
equation (13) expresses, that the #ow only depends on the dimensionless Re-number and
KC-number. We consider the following variations of these two numbers:

Re"[28.5; 57; 114] and KC"[5; 10; 20],

which appeared as reasonable settings for nonturbulent #ows. In combination this leads to
a variety of nine di!erent #ow cases. We examine the in#uence of the dimensionless
numbers on the #ow "eld by observing the temporal developement of the lift coe$cient c

�
.

Figure 8 shows the lift history for Re"57 and varying values of the KC-number. One can
observe that at the beginning of the rotational process, the interference of the actually shed
vortices with the &&old'' ones of the dissipating wake of previous cylinder revolutions leads to



Figure 7. Lift history for di!erent ratios of vessel and orbit radii R
�
: } } } , R

�
"5;** , R

�
"10; ) ) ) ) ) ) ) , R

�
"20.

Figure 8. Lift history for Re"57 and di!erent KC-numbers.
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nonharmonic vortex structures. Rather, harmonic oscillations of the lift for the smallest
KC-number are found, which means that the #ow pattern is dominated by the actual vortex
separation with only small disturbance of the &&previous'' #ow "elds.



Figure 9. Frequency history for Re"57 and di!erent KC-numbers:** , KC"5; - - - , KC"10; } } }, KC"20.
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Taking a look at the long-term behaviour of the levels of the lift values, we "nd
a reciprocal relation to the KC-number. This is in accordance with the Kutta}Joukowsky
theorem stating that for a cylinder moving in a #uid, the lift force A is proportional to the
circulation � and the characteristic velocity u

�
(Spurk 1989):

A"!��u
�
. (16)

Taking into account that � is proportional to � and u
�

depending linearly on �v
���

�, we can
deduce

A&��v
���

�"��r
���

.

Combining the de"nitions for the Re- and KC-number we obtain

�&

Re

KC
and r

���
&KC N �v

���
�&

1

Re
,

yielding the following estimate for the lift force:

A&

Re�

KC�
KC"

Re�

KC
.

Substituting this into equation (14) gives the relation

c
�
"

!A

��v
���

��r
���

&

1

KC
(17)

under the assumption that KC51. This reciprocal dependence of the relation between the
lift coe$cient and the dimensionless KC-number is in accordance with the results of



Figure 10. Amplitude history for Re"57 and di!erent KC-numbers:** , KC"5; - - - , KC"10; } } } , KC"20.

TABLE 2
Comparison of analytical and numerical lift coe$cients

Analytical value of c
�

Numerical value of c
�

KC"5 0)628 0)616
KC"10 0)314 0)332
KC"20 0)157 0)156
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Figure 8. Thus, the lift coe$cient level is independent of the Re-number and therefore of the
rotational velocity.

To get a more clear picture of the oscillating character of the lift, the histories of the
frequencies and amplitudes are shown in Figures 9 and 10. As already pointed out before,
after an inharmonic starting period with strong frequency and amplitude variations, we "nd
rather uniform oscillations related to regular separation of vortices with only small distur-
bances from previous rotations. Another e!ect that can be observed is the decrease of the
oscillations of the lift with time, which means that the vortices dissipate completely and the
separation of new ones terminates. From revolution to revolution the whole #uid in the
vessel is set in motion until it rotates with the same velocity as the cylinder (like when
stirring #uid in a cup). With the reduction of the relative velocity the frequency of the vortex
shedding decreases as well as the lift amplitudes, which turns out very clearly for the
KC"5 case. At the state of a uniformly moving #uid only the centrifugal force

F
���
�

"!ma"!��r
���

��r�
���

with m denoting the mass and a the acceleration acts on the cylinder which equals the stress
forces. Therefore, we "nd a rather constant value for the long-term lift coe$cient, which can



Figure 11. Vorticity "eld for Re"57 and di!erent KC-numbers after one, two and three revolutions.
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easily be derived from the lift de"nition

c
�
"

!F
���
�

��v
���

��r
���

"

��r
���

��r�
���

��v
���

��r
���

.

This "nally yields

c
�
"

�r
���

r
���

"

�
KC

, (18)

which is in accordance with the numerical results. In Table 2, the numerical lift values are
compared to the analytical ones taken from equation (18). Because for the presented cases
the stadium of a uniformly moving #uid is not yet fully reached, we extrapolated the
long-term lift coe$cients from the average value of the last oscillations. We obtain a very
good agreement of the values for all three KC-numbers.

To get an impression of the nature of the #ow "eld, Figure 11 presents the vorticity of the
#uid #ow after one, two and three completed revolutions for all three KC-numbers. Note
that di!erent KC-numbers mean di!erent orbit radii, such that a constant clipping leads to
decreasing cylinder sizes.



Figure 12. Vorticity "eld for long-term history for Re"57 and KC"5 after each fourth revolution (from left to
right).
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Furthermore, a long-term development of the #ow is considered in Figure 12, where for
KC"5, the vorticity for each fourth revolution is given. The described e!ects of declining
frequencies of vortex separation and of the relative velocity are seen to materialize.

For the other Re-numbers we "nd very similar e!ects. Admittedly, for Re"114 (see
Figures 13}15) the amplitudes and frequencies of the oscillations of the starting period are
much larger than for the Re"57. However, after several revolutions with strong wake
interference forming disturbed complicated #ow patterns, one can observe that the lift
develops again regularly. Again, the smallest KC-number yields the most harmonic oscilla-
tions monotonically decreasing in frequency and amplitude. For the other KC-numbers an
interference of oscillations occur after some time resulting in a more disturbed vortex



Figure 13. Lift history for Re"114 and di!erent KC-numbers.

Figure 14. Frequency history for Re"114 and di!erent KC-numbers: ** , KC"5; - - - , KC"10; } } } ,
KC"20.
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shedding with varying lift frequencies. Nevertheless, the amplitude and frequency decrease
continuously.

As expected, vortices are shed much slower for the smallest Re-number investigated
(Figures 16}18). Due to this, amplitudes and frequencies are accordingly smaller compared



Figure 15. Amplitude history for Re"114 and di!erent KC-numbers: ** , KC"5; - - - , KC"10; } } } ,
KC"20.

Figure 16. Lift history for Re"28.5 and di!erent KC-numbers.
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to the higher Re-numbers. For KC"20 almost all vortices are already dissipated before
they can interfere with the new #ow pattern of the next revolution. Lift oscillations can
hardly be observed for this case. During the whole temporal period, the rate of vortex



Figure 17. Frequency history for Re"28.5 and di!erent KC-numbers: ** , KC"5; - - - , KC"10; } } } ,
KC"20.
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shedding in this case is very low due to the large ratio between cylinder and orbit radii.
&&Previous'' #ow "elds only slightly in#uence the actual one. However, we "nd remarkably
di!erent results for KC"10. After a starting period with an nonharmonic lift development,
the frequency of the vortex shedding stabilizes and vortices separate harmonically but with
slightly increasing amplitudes. Further investigations showed that this state of the #ow
continues for a rather long time before the reduction of amplitudes and frequencies prevail
again. It takes much more time compared to the other cases to yield the vessel #uid being
fully in motion. We can conclude that this behaviour is due to a kind of resonance between
the old and dissipating wake of a former revolution and the actual separated vortices of the
new revolution.

Taking the results for all Re-numbers into account, we "nd, that the theoretical indepen-
dence of the long-term lift coe$cient from Re, which was derived in equations (17) and (18),
is fully recovered. Only slight deviations of the average lift show up for varying Re- at
constant KC-numbers.

5. CONCLUSIONS

We have presented results of #ow simulations for a cylinder orbiting in a #uid, where special
attention has been paid to the variation of the #ow pattern when varying the KC- and
Re-number, which are the important problem parameters.

The dependence of numerical parameters such as time-step size and grid resolution was
investigated "rst, leading to a reasonable numerical setting from the accuracy point of view
for further investigations. In particular, it turned out that the problem con"guration is
rather demanding with respect to the spatial resolution in order to get numerical results
with adequate accuracy.



Figure 18. Amplitude history for Re"28.5 and di!erent KC-numbers: ** , KC"5; - - - , KC"10; } } } ,
KC"20.
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We found the lift coe$cient in the long-term depending only on the KC-number. The
Re-number just in#uences the amplitudes of the oscillations of the nonregular starting
period, where very complex #ow structures develop. Due to the in#uence of the vessel
boundary the amplitudes and frequencies decrease in time until #uid and cylinder move
with the same velocity. For small Re-numbers this #ow state is reached after a shorter
period of dimensionless time. For KC"5 all computations showed a history of very
regularly shed KaH rmaH n-vortices, while for the larger KC-numbers the interference of
previous and new vortices lead to more nonharmonic #ow structures and lift oscillations.

REFERENCES

CHAPLIN, J.R. 1988 Loading on a cylinder in uniform oscillatory #ow. Part I * planar oscillatory
#ow. Applied Ocean Research 10, 120}128.

DURST, F. & SCHAG FER, M. 1996 A parallel blockstructured multigrid method for the prediction of
incompressible #ows. International Journal for Numerical Methods in Fluids 22, 549}565.

DUG TSCH, H., DURST, F., BECKER, S. & LIENHART, H. 1998 Low-Reynolds-number #ow around an
oscillating circular cylinder at low Keulegan}Carpenter numbers. Journal of Fluid Mechanics 360,
249}271.

LIN, X., BEARMAN, W. & GRAHAM P.W. 1996 A numerical study of oscillatory #ow about a circular
cylinder for low values of beta parameters. Journal of Fluids and Structures 10, 501}526.

SPURK, J. 1989 Stro( mungslehre. Berlin: Springer.
TATSUNOM. & BEARMAN P.W. 1990 A visual study of the #ow around an oscillating circular cylinder

at low Keulegan}Carpenter numbers and low stokes numbers. Journal of Fluid Mechanics 211,
159}171.

WU, J. & SHERIDAN, J. 1997 The wake of an orbiting cylinder. Journal of Fluids Structures 11, 617}626.
ZDRAVKOVICH, M. M. 1997 Flow Around Circular Cylinders. Vol.1: Fundamentals. Oxford: Oxford

University Press.


	1. INTRODUCTION
	Figure 1
	Figure 2

	2. GOVERNING EQUATIONS
	Figure 3
	Figure 4

	3. NUMERICAL METHOD AND NUMERICAL ACCURACY
	TABLE 1
	Figure 5
	Figure 6

	4. NUMERICAL RESULTS
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	TABLE 2
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17

	5. CONCLUSIONS
	Figure 18

	REFERENCES

